Práctica: Red Neuronal.
Objetivo: Visualizar una solución de los datos - Construcción de una red neuronal
Conseguir que nuestra red neuronal separe en 2 clases diferentes los datos..
Recurso: El siguiente ejercicio es una práctica del siguiente video: https://www.youtube.com/watch?v=W8AeOXa_FqU
Autor: Carlos Prado | Córdoba Argentina
Licencia: "Dot CSV" 16/11/2018
import numpy as np
import scipy as sc
import matplotlib.pyplot as plt
from sklearn.datasets import make_circles
# CREAR EL DATASET
n = 500
p = 2
X, Y = make_circles(n_samples=n, factor=0.5, noise=0.05)
Y = Y[:, np.newaxis]
plt.scatter(X[Y[:, 0] == 0, 0], X[Y[:, 0] == 0, 1], c="skyblue")
plt.scatter(X[Y[:, 0] == 1, 0], X[Y[:, 0] == 1, 1], c="salmon")
plt.axis("equal")
plt.show()
# CLASE DE LA CAPA DE LA RED
class neural_layer():
def __init__(self, n_conn, n_neur, act_f):
self.act_f = act_f
self.b = np.random.rand(1, n_neur) * 2 - 1
self.W = np.random.rand(n_conn, n_neur) * 2 - 1
# FUNCIONES DE ACTIVACION
sigm = (lambda x: 1 / (1 + np.e ** (-x)),
lambda x: x * (1 - x))
relu = lambda x: np.maximum(0, x)
_x = np.linspace(-5, 5, 100)
plt.plot(_x, relu(_x))
# CREAMOS LA RED NEURONAL
l0 = neural_layer(p, 4, sigm)
l1 = neural_layer(4, 8, sigm)
# ...
def create_nn(topology, act_f):
nn = []
for l, layer in enumerate(topology[:-1]):
nn.append(neural_layer(topology[l], topology[l+1], act_f))
return nn
#prueba de ejecución (OK)
create_nn(topology, sigm)
# FUNCION DE ENTRENAMIENTO
topology = [p, 4, 8, 1]
neural_net = create_nn(topology, sigm)
l2_cost = (lambda Yp, Yr: np.mean((Yp - Yr) ** 2),
lambda Yp, Yr: (Yp - Yr))
def train(neural_net, X, Y, l2_cost, lr=0.5, train=True):
out = [(None, X)]
# Forward pass
for l, layer in enumerate(neural_net):
z = out[-1][1] @ neural_net[l].W + neural_net[l].b
a = neural_net[l].act_f[0](z)
out.append((z, a))
if train:
# Backward pass
deltas = []
for l in reversed(range(0, len(neural_net))):
z = out[l+1][0]
a = out[l+1][1]
if l == len(neural_net) - 1:
deltas.insert(0, l2_cost[1](a, Y) * neural_net[l].act_f[1](a))
else:
deltas.insert(0, deltas[0] @ _W.T * neural_net[l].act_f[1](a))
_W = neural_net[l].W
# Gradient descent
neural_net[l].b = neural_net[l].b - np.mean(deltas[0], axis=0, keepdims=True) * lr
neural_net[l].W = neural_net[l].W - out[l][1].T @ deltas[0] * lr
return out[-1][1]
train(neural_net, X, Y, l2_cost, 0.5)
print("")
# VISUALIZACIÓN Y TEST
import time
from IPython.display import clear_output
neural_n = create_nn(topology, sigm)
loss = []
for i in range(2500):
# Entrenemos a la red!
pY = train(neural_n, X, Y, l2_cost, lr=0.05)
if i % 25 == 0:
print(pY)
loss.append(l2_cost[0](pY, Y))
res = 50
_x0 = np.linspace(-1.5, 1.5, res)
_x1 = np.linspace(-1.5, 1.5, res)
_Y = np.zeros((res, res))
for i0, x0 in enumerate(_x0):
for i1, x1 in enumerate(_x1):
_Y[i0, i1] = train(neural_n, np.array([[x0, x1]]), Y, l2_cost, train=False)[0][0]
plt.pcolormesh(_x0, _x1, _Y, cmap="plasma")
plt.axis("equal")
plt.scatter(X[Y[:,0] == 0, 0], X[Y[:,0] == 0, 1], c="white")
plt.scatter(X[Y[:,0] == 1, 0], X[Y[:,0] == 1, 1], c="salmon")
clear_output(wait=True)
plt.show()
plt.plot(range(len(loss)), loss)
plt.show()
time.sleep(0.5)